Skip to main content
Log in

Toxicological evaluation of aspartame against Madin–Darby canine kidney cells

  • Original paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Aspartame is most widely used as artificial sweeteners in more than 6000 food varieties. Aspartame digested into aspartic acid, phenylalanine, and methanol, and several peroxides, superoxide molecules also generated together. The kidney is the secondary site for the cellular metabolism. The present study examined whether the treatment of aspartame induces oxidative stress in the Madin–Darby kidney cells (MDCK). The effects of aspartame on MDCK cell viability were investigated by the sulphorhodamine-B assay and flow cytometry. Morphology of MDCK cells following aspartame exposure was observed. Mitochondria-derived reactive oxygen species (ROS) was also determined using 2′,7′-dichlorodihydrofluorescein diacetate. Lipid peroxidation (LPO), glutathione reduced (GSH) levels and activities of superoxide dismutase (SOD), and catalase enzymes were also determined. Cell viability was significantly altered following aspartame exposure. Morphology of MDCK cells did not change significantly. However, there was a marginal morphological change, including rounding, sporadic distribution and loss of adherence were observed at higher doses of aspartame exposure. Mitochondria-derived ROS was increased in a dose-dependent manner following aspartame exposure. A significant increase in LPO levels, whereas GSH level was reduced after 48 and 72 h of aspartame exposure. SOD and catalase enzyme activities were significantly reduced in a dose- and time-dependent manner. Taking all these data together, it is concluded that aspartame may induce oxidative stress in the MDCK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Muthuraman, G. Enkhtaivan, D. H. Kim, Cytotoxicity effects of aspartame on the human cervical carcinoma cells. Toxicol. Res. 5, 45–52 (2016)

    Article  Google Scholar 

  2. Y. Oyama, H. Sakai, T. Arata, Y. Okano, N. Akaike, K. Sakai, K. Noda, Cytotoxic effects of methanol, formaldehyde, and formate on dissociated rat thymocytes: a possibility of aspartame toxicity. Cell Biol. Toxicol. 18, 43–50 (2002)

    Article  CAS  Google Scholar 

  3. W.E. Lipton, Y.N. Li, M.K. Younoszai, L.D. Stegink, Intestinal absorption of aspartame decomposition products in adult rats. Metabolism 40, 1337–1345 (1991)

    Article  CAS  Google Scholar 

  4. C. Woodrow, Monte and methanol. J. Appl. Nutr. 36, 1–15 (1984)

    Google Scholar 

  5. P. Humphries, E. Pretorius, H. Naude, Direct and indirect cellular effects of aspartame on the brain. Eur. J. Clin. Nutr. 62, 451–462 (2008)

    Article  CAS  Google Scholar 

  6. E. Davoli, Serum methanol concentrations in rats and men after a single dose of aspartame. Food Chem. Toxicol. 24, 187–189 (1986)

    Article  CAS  Google Scholar 

  7. J.J. Liu, M.R. Daya, O. Carrasquillo, N.S. Kales, Prognostic factors in patients with methanol poisoning. J. Toxicol. Clin. Toxicol. 36, 175–181 (1998)

    Article  CAS  Google Scholar 

  8. C. Trocho, R. Pardo, I. Rafecas, J. Virgili, X. Remesar, J.A. Fernandez- Lopez, M. Alemany, Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sci 63, 337–349 (1998)

    Article  CAS  Google Scholar 

  9. J.N. Parthasarathy, S.K. Ramasundaram, M. Sundaramahalingam, S.D. Pathinasamy, Methanol is induced oxidative stress in rat lymphoid organs. J. Occup. Health (London) 48, 20–27 (2006)

    Article  CAS  Google Scholar 

  10. G.D. Castro, M.H. Costantini, A.M. Delgado de layno, A. Castro, Rat liver microsomal and nuclear activation of methanol to hydroxyl methyl free radicals. Toxicol. Lett. 129, 227–236 (2002)

    Article  CAS  Google Scholar 

  11. Y. Naito, T. Yoshikawa, What is oxidative stress? JMAJ 45, 271–276 (2002)

    Google Scholar 

  12. P. Muthuraman, G. Enkhtaivan, V. Baskar, M. Bhupendra, N. Rafi, Y.J. Bong, D.H. Kim, Time and concentration dependent therapeutic potential of silver nanoparticles in cervical carcinoma cells. Biol. Trace Elem. Res. 170, 309–319 (2015)

    Google Scholar 

  13. P. Muthuraman, K. Ramkumar, D.H. Kim, Analysis of the dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Appl. Biochem. Biotechnol. 174, 2851–2863 (2014)

    Article  CAS  Google Scholar 

  14. K.H. Jones, J.A. Senft, An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem. 33, 77–79 (1985)

    Article  CAS  Google Scholar 

  15. P. Muthuraman, P. Jeongeun, K. Eunjung, Aspartame down-regulates 3T3-L1 differentiation. In Vitro Cell. Dev. Biol. Anim. 50, 851–857 (2014)

    Article  Google Scholar 

  16. P. Muthuraman, G. Enkhtaivan, M. Bhupendra, M. Chandrasekaran, N. Rafi, D.H. Kim, Investigation of the role of aspartame in apoptosis process in Hela cells. Saudi J. Biol. Sci. 23, 503–506 (2016)

    Article  Google Scholar 

  17. L.D. Stegink, in Aspartame Metabolism in Humans: Acute Dosing Studies, eds. by L. Stegink, L. Filer. Aspartame: Physiology and Biochemistry (Marcel Dekker, New York, 1984), pp. 509–553

  18. F. K. Trefz, H. Bickel, Tolerance in PKU heterozygotes. In: Tschanz C, Butchko HH, Stargel, WW, Kotsonis FN (eds). The clinical evaluation of food is additive. Assessment of aspartame, pp. 149–160 (1996)

  19. R. S. Adelstein, S. P. Scordilis, J. A. Trotter, The cytoskeleton and cell movement: general considerations. Meth. Achiev. Exp. Pathol. 8, 1–41 (1979)

    CAS  Google Scholar 

  20. R. R. Weihing, The cytoskeleton and plasma membrane. Meth. Achiev. Exp. Pathol. 8, 42–109 (1979)

    CAS  Google Scholar 

  21. R. R. Ratan, T. H. Murphy, J. M. Baraban, Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62, 376–379 (1994)

    Article  CAS  Google Scholar 

  22. J. P. Spencer, A. Jenner, O. I. Aruoma, P. J. Evans, H. Kaur, D. T. Dexter, A. J. Lees, D. C. Maraden, B. Halliwell, Intense oxidative DNA damage promoted by l-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Lett. 352, 246–250 (1994)

    Article  Google Scholar 

  23. J. Chandra, A. Samali, S. Orrenius, Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29, 323–333 (2010)

    Article  Google Scholar 

  24. S.V. Rana, Metals and apoptosis: recent developments. J. Trace Elem. Med. Biol. 22, 262–284 (2008)

    Article  CAS  Google Scholar 

  25. P.M. Abuja, R. Albertini, Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta 306, 1–17 (2001)

    Article  CAS  Google Scholar 

  26. K. Hashimoto, W. Takasaki, T. Yamoto, S.I. Manabe, S. Tsuda, Effect of glutathione (GSH) depletion on DNA damage and blood chemistry in aged and young rats. J. Toxicol. Sci. 33, 421–429 (2008)

    Article  CAS  Google Scholar 

  27. P. Ahluwalia, K. Tewari, P. Choudhary, Studies on the effects of monosodium glutamate (MSG) on oxidative stress in erythrocytes of adult male mice. Toxicol. Lett. 84, 161–165 (1996)

    Article  CAS  Google Scholar 

  28. D. Pankow, S. Jagielki, Effect of methanol on modifications of hepatic glutathione concentration in the metabolism of dichloromethane to carbon monoxide in rats. Hum. Exp. Toxicol. 12, 227–231 (1993)

    Article  CAS  Google Scholar 

  29. M. Mourad, Effect of aspartame on some oxidative stress parameters in liver and kidney of rats. Afr. J. Pharm. Pharmacol. 5, 678–682 (2011)

    Article  CAS  Google Scholar 

  30. Ashok, R. Sheeladevi, Biochemical responses and mitochondrial-mediated activation of apoptosis on the long-term effect of aspartame in rat brain. Redox Biol. 2, 820–831 (2014)

    Article  CAS  Google Scholar 

  31. K.H. Cheese-man, Mechanisms and effects of lipid peroxidation. Mol. Aspects Med. 14, 191–197 (1993)

    Article  CAS  Google Scholar 

  32. L. Bergendi, L. Benes, Z. Durackova, Chemistry, physiology and pathology of free radicals. Life Sci. 65, 1865–1874 (1999)

    Article  CAS  Google Scholar 

  33. D. Zeyuan, T. Bingyin, L. Xiaolin, H. Jinming, C. Yifeng, Effect of green tea and black tea on the blood glucose, the blood triglycerides and antioxidation in aged rats. J. Agric. Food Chem. 46, 3875–3878 (1998)

    Article  Google Scholar 

  34. M. Zararsiz, U. Sarsilmaz, I. Tas, S. Kus, E. Meydan, Ozan, Protective effect of melatonin against formaldehyde-induced kidney damage in rats. Toxicol. Ind. Health 23, 573–579 (2007)

    Article  CAS  Google Scholar 

  35. I. Fridovich, Superoxidedismutase. Ann. Rev. Biochem. 44, 147–159 (1995)

    Article  Google Scholar 

  36. M. Gulec, A. Gurel, F. Armutcu, Vitamin E protects against oxidative damage caused by formaldehyde in the liver and plasma of rats. Mol. Cell Biochem. 290, 61–67 (2006)

    Article  CAS  Google Scholar 

  37. J. R. Chang, D. Q. Xu, Effects of formaldehyde on the activity of superoxide dismutase and glutathione peroxidase and the concentration of malondialdehyde. Wei Sheng Yan Jiu 35, 653–655 (2006)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the KU Research Professor Program of Konkuk University, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandurangan, M., Enkhtaivan, G., Mistry, B. et al. Toxicological evaluation of aspartame against Madin–Darby canine kidney cells. Food Measure 11, 355–363 (2017). https://doi.org/10.1007/s11694-016-9404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9404-2

Keywords

Navigation